Prefix Reversals on Binary and Ternary Strings

نویسندگان

  • Cor A. J. Hurkens
  • Leo van Iersel
  • Judith Keijsper
  • Steven Kelk
  • Leen Stougie
  • John Tromp
چکیده

Given a permutation π, the application of prefix reversal f (i) to π reverses the order of the first i elements of π. The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed size alphabet. We determine the minimum number of prefix reversals required to sort binary and ternary strings, with polynomial-time algorithms for these sorting problems as a result; demonstrate that computing the minimum prefix reversal distance between two binary strings is NP-hard; give an exact expression for the prefix reversal diameter of binary strings; and give bounds on the prefix reversal diameter of ternary strings. We also consider a weaker form of sorting called grouping (of identical symbols) and give polynomial-time algorithms for optimally grouping binary and ternary strings. A number of intriguing open problems are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. C O ] 4 J ul 2 00 6 Prefix reversals on binary and ternary strings ⋆

Given a permutation π, the application of prefix reversal f (i) to π reverses the order of the first i elements of π. The problem of Sorting By Prefix Reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Bounds for sorting by prefix reversal, Discrete Mathematics 27, pp. 47-57), asks for the minimum number of prefix reversals required to sort the elements of a giv...

متن کامل

ar X iv : m at h / 06 02 45 6 v 1 [ m at h . C O ] 2 1 Fe b 20 06 Prefix reversals on binary and ternary strings ⋆

The problem Sorting By Prefix Reversals (also known as pancake flipping), made famous by Gates and Papadimitriou [7], asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed-size alphabet. We demonstrate polynomial-time alg...

متن کامل

Prefix transpositions on binary and ternary strings

The problem of Sorting by Prefix Transpositions asks for the minimum number of prefix transpositions required to sort the elements of a given permutation. In this paper, we study a variant of this problem where the prefix transpositions act not on permutations but on strings over an alphabet of fixed size. Here, we determine the minimum number of prefix transpositions required to sort the binar...

متن کامل

On Representations of Ternary Order Relations in Numeric Strings

Order-preserving matching is a string matching problem of two numeric strings where the relative orders of consecutive substrings are matched instead of the characters themselves. The order relation between two characters is a ternary relation (>,<,=) rather than a binary relation (>,<), but it was not su ciently studied in previous works [5, 7, 1]. In this paper, we extend the representations ...

متن کامل

Pancake Flipping with Two Spatulas

In this paper we study several variations of the pancake flipping problem, which is also well known as the problem of sorting by prefix reversals. We consider the variations in the sorting process by adding with prefix reversals other similar operations such as prefix transpositions and prefix transreversals. These type of sorting problems have applications in interconnection networks and compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2007